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Abstract

The Arnoldi process is a well known technique for approximating a

few eigenvalues and corresponding eigenvectors of a general square
matrix. Numerical difficulties such as loss of orthogonality and as-

sessment of the numerical quality of the approximations as well as a

potential for unbounded growth in storage have limited the applica-

bility of the method. These issues are addressed by fixing the number

of steps in the Arnoldi process at a prescribed value k and then treat-

ing the residual vector as a function of the initial Arnoldi vector. This

starting vector is then updated through an iterative scheme that is

designed to force convergence of the residual to zero. The iterative
scheme is shown to be a truncation of the standard implicitly shifted

QR-iteration for dense problems and it avoids the need to explicitly
restart the Arnoldi sequence. The main emphasis of this paper is on

the derivation and analysis of this scheme. However, there are obvi-

ous ways to exploit parallelism through the matrix-vector operations
that comprise the majority of the work in the algorithm. Preliminary

computational results are given for a few problems on some parallel

and vector computers.
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1 Introduction

Large scale eigenvalue problems arise in a variety of settings. Often these

very large problems arise through the discretization of a linear differential

operator in an attempt to approximate some of the spectral properties of the

operator. However, there are a considerable number of sources other than

PDE. Saad gives a number of examples in [28].

If one hopes to solve extremely large algebraic eigenvalue problems it is

not possible to rely upon the proven methods for dense matrices such as the

Q-R iteration due to the expense of storage requirements and arithmetic cost

of an iteration. Fortunately, it is common to be interested only in a selected

subset of the spectrum of a large matrix. In the symmetric setting one is

typically interested in the extremes of the spectrum (i.e. a few of the largest

or smallest eigenvalues). In the non-symmetric setting one is often concerned

with determining eigenvalues with largest real part.

The Lanczos method [19] is a popular algorithm for solving large symmet-

ric eigenvalue problems . The Arnoldi process [1] is a generalization of the

Lanczos method which is appropriate for finding the eigenvalues of a large

non-symmetric matrix. These methods only require one to compute action of

the matrix on a vector through a matrix vector product. Often this may be

accomplished without explicit storage of the matrix and this property along

with a number of theoretical and computational features have contributed to

the widespread appeal of these methods. However, both of these share some

inherent numerical difficulties which have been the subject of considerable

research over the last two decades [ 8, 16, 25, 27].
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In this paper thesemethods will be discussedfrom a new perspective.

The goal is to addressthe non-symmetricproblem and thus the focus is on

the Arnoldi algorithm. However,sincethe Arnoldi method reducesto the

Lanczosmethod when the matrix is symmetric, everything that is devel-

opedhereis applicableto the symmetriccaseaswell with obvioussavingsin

computational effort availablethrough the exploitation of symmetry. Tradi-

tionally, the point of view hasbeento let the Arnoldi or the Lanczossequence

developwithout bound while monitoring error estimatesassociatedwith the

Ritz vectors to identify convergedeigenvalues.However, if one explores the

relation with the QR-iteration it is apparent that the Arnoldi (Lanczos)

method is really a truncated reduction of the given matrix into upper Hes-

senberg(tridiagonal) form. The iterative phaseof the QR-method doesnot

havean analogywithin the traditional treatment of thesealgorithms.

A variant of the Arnoldi method which includes suchan iterative phase

is developedhere by analogy to the well-known implicitly shifted Q-R iter-

ation [ 14, 33, 35] for densematrices. Suchan analogy may be developedif

one treats the residual vector as a function of the initial Arnoldi (Lanczos)

vector, and then attempts to iteratively improvethis vector in a way to force

the residual vector to zero. As shown here, this may be done by implicit

application of a polynomial filter to the starting vector on each iteration.

The implicit application of this polynomial filter is accomplishedthrough a

truncated version of the implicitly shifted Q-R iteration. Within this con-

text, an updating schemeis developedwhich preservesan Arnoldi (Lanczos)

factorization of predeterminedsize. The method generalizesexplicit restart

methods and it is possible to implement a mathematically equivalent im-

3



plicit method correspondingto all of the explicitly restarted methods that

this author is awareof (SeeSection5).

The ideaof iteratively forcing the residual to zero is not new. Variants of

this idea were introduced early by Karush in [18]. Cullum and her colleagues

have investigated explicit restart methods for the symmetric case [5, 6, 8].

Most recently the idea has been explored by Saad in [28,29] by Chatelin

and Ho in [2] and by Chronopoulos in [3] for the nonsymmetric case. All

of these techniques use eigensystem information from the projected matrix

to construct an updated starting vector for the Arnoldi (Lanczos) process,

and then restart this process from scratch. Here, a computational framework

is developed which updates the Arnoldi factorization instead of re-starting

it. As just mentioned, this update procedure is completely analogous to the

implicitly shifted QR-iteration. It is shown here that the update procedure

will implicitly apply linear polynomial factors to the starting vector in a

manner that will purge the starting vector of unwanted components. In this

way invariant subspaces of predetermined dimension might be found.

This approach has several advantages over more traditional approaches.

The number of eigenvalues that are sought is prespecified. This fixes the

storage and computational requirements instead of allowing them to become

arbitrarily large. It is expected that the number of eigenvalues that are

sought will be modest, and in this situation, orthogonality of the Arnoldi

(Lanczos) basis for the Krylov subspace can be maintained. Therefore, the

questions of spurious eigenvalues and selective re-orthogonalization do not

enter. Finally, the well understood deflation rules associated with the QR

iteration may be carried over directly to the technique.
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2 The Arnoldi Factorization

The Arnoldi factorization may be viewed as a truncated reduction of an n x n

matrix A to upper Hessenberg form. After k steps of the factorization one

has

(2.1) AV = VH + re T

where V E R nxk, vTv = Ik; H E R k×k is upper Hessenberg, r E R" with

0 = VTr. An alternative way to write (2.1) is

(2.2) AN = (Y,v) where 5 = Ilrll and v = l_r.

From this representation, it is apparent that (2.2) is just a truncation of the

complete reduction

(2.3) A(V,p)=(V,_)( Hsel er M)[_I

where (I/, 13') is an orthogonal n x n matrix and H is an upper Hessenberg

matrix of order n - k. Equation (2.2) and hence (2.1) may be derived from

(2.3) by equating the first k columns of both sides and setting v = I7el.

The factorization (2.1) may be advanced one step through the following



recursion formulas:

(2.3.1)

(2.3.2)

1 °

= Ilrll; v =

w+= (v, v) ;

(2.3.3) w = Av ;

( h)(2.3.4) H+= _eI-IkT(_ ,

(2.3.5) r+=w- V+ ( h ) =(I- V+V+T)w'a

From this development it is easily seen that

AV+ = Y+g+ + r+eT+, , vT+v+ = Ik+, , yTr+ = O .

In a certain sense, computation of the projection indicated at Step (2.3.5) has

been the main source of research activity in this topic. The computational

difficulty stems from the fact that Ilrll = 0 if and only if the columns of V

span an invariant subspace of A. When V "nearly" spans such a subspace

Ilrl] will be small. Typically, in this situation, a loss of significant digits will

take place at Step (2.3.5) through numerical cancellation unless special care

is taken. On the one hand, it is a delightful situation when I]rl[ becomes small

because this indicates that the eigenvalues of H are accurate approximations

to the eigenvalues of A. On the other hand, this "convergence" will indicate

a probable loss of numerical orthogonality in V. The identification of this

phenomenon and the first rigorous numerical treatment is due to Paige[22,23].

There have been several approaches to overcome this problem :



(1) Complete Re-orthogonalization.

This may be accomplished through maintaining V in product House-

holder form [15, 34]. It may also be accomplished through the Modified

Gram-Schmidt processes with re-orthogonalization [9, 26]. More will be

said of these alternatives later.

(2) Selective Re-orthogonalization.

This option has been proposed by Parlett and has been heavily re-

searched by him and his students. Most notably, the thesis and sub-

sequent papers and computer codes of Scott have developed this idea

[24, 25, 31]. The general scheme is described in [25].

(3) No Re-orthogonalization.

This last option introduces the almost certain possibility of introducing

spurious eigenvalues. Various techniques have been developed to detect

the presence of spurious eigenvalues [7, 8]. However, they do not appear

when even a modest level of linear independence has been imposed on

the Arnoldi vectors.

Computational cost has been cited as the reason for not employing com-

plete orthogonalization of the Arnoldi (or Lanczos) vectors. However, the

cost will be reasonable if one is able to fix k at a modest size and then up-

date the starting vector vl = Vex while repeatedly doing k-Arnoldi steps.

This approach has been explored to some extent in [2, 28]. In the symmetric

case Cullum [6] relates a variant of this approach (which has been termed

an s-Step method) to applying a fixed number of conjugate gradient steps to



a minimize (maximize) (vVT, A) where (B,A) = trace(B TA) is the Frobe-

nius product functional with V restricted to the generalized block Krylov

subspace. However, while this argument gives considerable credence to the

restart procedure, it does not establish convergence.

Throughout the remainder of this paper, the k-step approach will be de-

veloped from a different point of view. An attempt will be made to iteratively

update va in order to force the residual vector r(vl) to zero. In order to make

sense of this it will be necessary to understand when r is indeed a function

of va and also to determine its functional form and characterize the zeros of

this function.

The classic simple result that explains when r is a function of vl is the

Implicit Q-Theorem.

Theorem 2.4 Suppose

AV = VH + ve T

AQ = QG + f eT

where Q, V have orthonormal columns and G, H are both upper Hessenberg

with positive subdiagonal elements.

_ If Oel = Vel and QTf = Vrr = O, then Q = V, G = H, and f = r.

Proof: There is a straightforward inductive proof (or see [16,p367]).

Of course the Krylov space

[]

ICj,( A, v,) = Span {v,, Av,, A2v,, . . . , Ak-'v, }



plays an important role along with the Krylov matrix

K = (vl,Avl,...,Ak-lvl) •

An alternate derivation of the Arnoldi process is to consider the companion

(or Frobenius) matrix

and to observe that

(2.5)

( )(0 /0 ")'o 1 71

I _ 1 ".. :

1 "rk-1

AK KF ^ T_ =_ re k

where ÷ = AkVl -- Kg with gT = (to, oT). Note that _ = /_(A)Vl where

k-1/_(A) = Ak + _j=o'TJ Aj and also that/5(A) is the characteristic polynomial

of F. If g is chosen to solve min [[AkVl - Kgl[2 then _ is orthogonal to all

vectors in Kk(A, vl). Moreover/3 solves min {[[p(A)v_l[} where T'Adk is the
pE'P.,_.4 k

set of all monic polynomials of degree k.

To solve the minimization problem in (2.5), one would factor K = QR

where Q is orthogonal, R is upper triangular. Note that R is nonsingu-

lar if and only if K has linearly independent columns and that Q may be

constructed so that P_i = eTRei > O. One then solves

g = R-1QTA_vl .

This choice of g will minimize the residual and also will assure that 0 =

QTy. Multiplying (2.5) on the right by R -I gives

A(KR -1) - (I(R-1)RFR -1 = _.eT R -_ '



i°e,

(2.6) AQ - QG = fe T

where Q = KR -1, G = RFR -a is upper Hessenberg with the same character-

istic polynomial as F, and f = 1__. It is easily verified that vi = Qel = Vel
Pkk

, and 0 = QTf . Thus, the Implicit Q-Theorem will imply that Q = V,

G = H, and f = r. Putting H = G yields

flj -- eT+lHej --_ e Tj+,RFR-'ej =

Moreover,

Pj+I,j+1

Pjj

1_ Pj+ I,j+ I
--II s(A)v, ll= Z3-
Pig PJJ

gives

PS+,,_+, = 11÷511= IlPs(A)Vl[I •

This discussion establishes the following.

Theorem 2.7 Let AVj = VjHj + rje T be a sequence of successive Arnoldi

steps 1 < j < k and suppose that dim(K.k(A, v,)) = k. Then

1 [liS/(d)vl II

(1) rj = IliSj-,(A)v, ._j(A)vl, 15j = iliSj_,(A)v, ii

where faj( _ ) is the characteristic polynomial of H i. Moreover,

(2) P.i solves rain {llp(A)vlll)
pEP.a¢ b

forl <_j <_k.

The development leading to Theorem (2.7) follows and builds upon the

development by Ruhe in [27]. The fact that II k(A)v, II (the characteristic
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polynomial of Hk acting on vl ) will minimize Hp(A)vl H over all monic poly-

nomials of degree k was proved by Saad in [29]. Theorem (2.7) points out

that this minimum principle is is not useful in assessing the behavior of the

residual obtained through the Arnoldi process.

Since rk = 0 if and only if vl is in the null space of some k-degree polyno-

mial in A, it is likely that rk = 0 if and only if vk is the sum of k-eigenvectors

of A. We establish this result in the following.

Theorem 2.8 Let AVk - VkHk = rke_ be a k-step Arnoldi factorization of

A, with rj _ O, 0 _ j _ k - l. Then rk = 0 and Hk is diagonalizable

if and only if v, = _k=, xi, where {xi} is a set of k linearly independent

eigenveetors for A.

k
Proof: Suppose vl = _j=x zj, where {xj} are a set of linearly independent

eigenvectors for A. Then

Kk+,(A,v,) = Span {o,,Av,,...,Akvx} C Span ({xj})

and since r__l # 0 =v _k-l(A)vl # 0

1

[Irkll= II k-,(m)vall Ilbk(z)vxll -- 0

must hold because the k+ 1 vectors {vl, Avl,..., A%a } lie in a k-dimensional

subspace. Moreover, rj ¢ 0 for 0 < j < k - 1 implies dim K:k(A, vl) = k and

since K:k(A, vx) C Span {zj} these two subspaces must be identical. Thus the

columns of Vk form a basis for Span {xj} and hence xj = Vkyj for 1 < j < k.

It follows easily now from the Arnoldi factorization that {y3} is a set of k

linearly independent eigenvectors for H.

11



Supposenow that rk = 0 and Hk is diagonalizable. Then

A Vkyj = V Hkyj = ._j Vkyj

for every eigenpair (yj,,_i) of Hk. Since Hk is diagonalizable, {y3} hence

X - {xj : xj = Vky.i} is a linearly independent set of eigenvectors for A. The

k
set of vectors X must be a basis for lCk(A, vl) so vl = _j=l Ojxj. If any Oj = 0

for 1 < j < k, then vl would be the sum of fewer than k eigenvectors so rj

would vanish for some 1 < j < k - 1 by the first part of the proof. []

The presence of non-trivial Jordan blocks in H can be dealt with by

introducing generalized eigenvectors. There is an analogous statement and

proof but the details are tedious.

Now that the nature of the residual has been exposed and now that a

criterion for this residual to vanish has been set forth it is possible to devise

algorithms to accomplish this goal. The point of view that shall be taken for

the derivation of these algorithms has considerable analogy with the standard

QR-iteration. In the next section this iteration is discussed in a framework

that will aid in the derivation of the new algorithms.

3 Relation to the QR Algorithm

In order to motivate the point of view put forth in the remainder of this

paper, it will be instructive to derive and analyze the QR iteration from a

certain point of view.

To do this, suppose that there has been a complete reduction of A to

12



upper Hessenbergform. Thus

(3.1) AV- VH = 0, vTv = I,., , H-upper Hessenberg.

The explicitly shifted QR algorithm consists of the following four steps. Let

# be the shift and let (H- pI) = QR with Q orthogonal and R upper

triangular. Then

(3.1.1)

(3.1.2)

(3.1.3)

(3.1.4)

(A- pI)V- V(H- ]_I) = O

(A- pI)V - VQR = 0

(A- _I)(VQ) - (VQ)(RQ) = 0

A(VQ) - (VQ)(RQ + #I) = o

After these four steps we have updated (3.1) to produce

(3.2) AV+ - V+H+ = 0

where V+ = VQ, and H+ = RQ + ILl is upper Hessenberg. Note that from

(3.1.2) and (3.2) it follows that

(A - #I)vl = v+ pn

where pal -- eTRel, v + -- U+el. Moreover, from (3.1.3)

(VQ)-_(A - pI)-' - (RQ)-I(VQ) -' = O .

Hence

i.e.

QTvT(A -- pI) -1 -- QT R-1VT+ -- O,

VT(A - I_I)-' - R-'V T = 0

13



so that

where v. = Ve,.,, v+

(A - pI)Tv + = p,_,_v,_

= V+en. This proves the well known that the QR

iteration is performing inverse iteration [33] with respect to A T on the last

column of V.

An implicitly shifted QR step starting with (3.1) consists of

(3.3) A(VQ) - (VQ)(Q T HQ) = 0

where the orthogonal matrix Q is computed as a product of Givens transfor-

mations which are specified implicitly through the well known "bulge chase"

sequence as described in [25,p159, 33] once the shift p is specified. From

the previous discussion, the application of p implicit shifts will result in the

implicit application of a polynomial ¢ of degree p to the vector vl. Thus

once the p shifts have been applied

(3.4) AV+ - V+H+ = O

T T
where V+ = VQ1Q_...Qp, H+ = QT...Q2Q 1HQIQ2".Qp with v + - V+e 1

satisfying

v + = ¢(A)v,

where ¢(,_) = !_ I-I_=1(, _ _ #j) with r a normalizing factor to make IlVl+ll = 1

and {/_j} the set of p implicit shifts.

From this point of view, one may interpret the QR iteration as a process of

rapidly determining an approximate root p of the characteristic polynomial

and then applying the linear factor A-#I to Vl to replace it with v+ *--- !(A-_.

14



#I)vl in order to purge the starting vector of components along eigenvectors

associated with /L. As the iteration proceeds, subdiagonal elements of H

must tend to zero according to Theorem (2.8).

In the next section, the mechanics of applying an implicit shift to an

Arnoldi factorization will be developed. Eventually, the goal will be to choose

shifts in a way that will damp or filter out the components of unwanted

eigenvectors in the starting vector vl. In the large scale setting, it is not

viable to apply an implicit shift corresponding to each unwanted eigenvalue.

Therefore, polynomial filtering techniques will have to be utilized.

4 Updating the Arnoldi Factorization

In this section a direct analogue of the QR iteration will be derived. This

will lead to an updating formula that can be used to implement an iterative

technique for forcing the residual rk to zero by iteratively forcing vl into a

subspace spanned by k eigenvectors.

Throughout this discussion, the integer k should be thought of as a fixed

pre-specified integer of modest size. Let p be another positive integer, and

consider the result of k + p steps of the Arnoldi process applied to A which

has resulted in the construction of an orthogonal matrix Vk+p such that

T
(4.1) AVk+p = Vk+pHk+p + rk+pek+p

---- (Yk+P'Vk+p+l) ( Hk+p)flk+pek+pT

An analogy of the explicitly shifted QR algorithm may be applied to this

truncated factorization of A. It consists of the following four steps. Again,

15



let /z be the shift and let (H - _tI) = QR with Q orthogonal and R upper

triangular. Then (putting V = Vk+p, H = Hk+p)

(4.1.1) (A- #I)V - V(H- lzI) = rk+pe_+p

(4.1.2) (m #I)V VQR T__ __ .-- Tkq.pek.t_ p

(4.1.3) (A - #I)(VQ) - (VQ)(RQ) = rk+pek+p QT

_ __ rk+pek+pQ(4.1.4) A(VQ) (VQ)(RQ + I_I) T

Note that just as in (3.1.1) - (3.1.4), if one takes V+ = VQ and H+ = RQ+#I,

then H+ is upper Hessenberg and

(A - pI)vl = Vl+ flll

where pll = eTRel, v + = V+e_ just as before so long as eT+pQel = 0. Since

Q is an upper Hessenberg matrix of order k+v. This idea may be extended

for up to p shifts being applied successively. The development will continue

using the implicit shift strategy.

The application of a QR iteration corresponding to an implicit shift /_

produces an upper Hessenberg orthogonal Q E R k+p such that

( QTHk+pQ )AVk+pQ = (Vk+pQ , vk+p+,) T
flk+pek+pQ

An application of p implicit shifts therefore results in

(4.2) AV_p=(V_pvk+p+_)(H++p' flk+p%+vQT^ )

where V_p = Vk+pQ, H++p = QTHk+pQ, and (_ = Q,Q2""Qp, with Qj the

orthogonal matrix associated with the shift #j.

16



Now, partition

(4.3) Vk+ p = (V +, _) , H_+p -- _keleT fl v ,

and note

T - =(o,o., bye).flk+,ek+pO
k P

Substituting into (4.2) gives

H:
(4.4) A(V +, r_/rp) .-_ (Y_-, Yp, Vk+p+l) _kel eT

~ T
/_k+pek

Equating the first k columns on both sides of (4.4) gives

(4.5)

so that

r+_TAV+-- V+H+ + k,_

M

bT

(4.6) AV+ (V+, + ( H+ )"- Uk+I) + T
flk ek

where v+k+l = _"[rk,1 + r + _ (l_pel/_k -4- Vk+p+l/_k+p) and fl+ = [Ir+[[. Note that

+ T +
(V+)r_el = 0 and (v+)Tvk+p+l = 0 so (Vk) vk+ 1 = 0. Thus (4.6) is a

legitimate Arnoldi factorization of A. Using this as a starting point it is

possible to use p additional steps of the Arnoldi recursions (2.3.1) - (2.3.5) to

return to the original form (4.1). This requires only p evaluations of a matrix-

vector products involving the matrix A and the p-new Arnoldi vectors. This

is to be contrasted with the Tchebyshev-Arnoldi method of Shad [28] where

the entire Arnoldi sequence is restarted. From the standpoint of numerical

stability this updating scheme has several advantages:

17



(1) Orthogonality canbe maintained sincethe valueof k is modest.

(2) There is no question of spurious eigenvalues.

(3) There is a fixed storage requirement.

(4) The deflation techniques associated with the QR-iteration for dealing

with numerically small subdiagonal elements of Hk may be taken ad-

vantage of directly.

For the sake of clarity, the Arnoldi iteration and the updating procedure

will be defined:

Algorithm 4.7

function [H, V, r] = A rnoldi (A, H, V, r, k, p)

Input: AV- VH = re T with vTv = Ik, vTr = O.

Output: AV - VH = re T with vTv = Ik+p, VTr = O.

(1) For j = 1,2,...,p

(1) ,--Ilrll; if _ < tol then stop;

(H) ,. (V,v);(2) H +-- T ; v _ -_r, V ,---
_ek+j- 1

(3) w +-- Av;

(4) h +-- VTw; g +-- (H,h);

(5) r +-- w - Vh;

(6) while Ilsll> 0"11;

(1) s = VTr;

18



Remark I: Step (1.6) is Gram Schmidt with iterative refinement to assure

orthogonality [9]. For details of implementation see Reichel and Gragg [26].

Computational experience with this device indicates that it is sufficient to

do just one step of iterative refinement.

With the basic Arnoldi factorization defined, it is possible to describe the

complete iteration:

Algorithm 4.8

function [V, H, r] = m rnupd (A, k, p, tol).

(1) initialize V(:,I) = v,; H +-- (viTAvl); r _ Av, - vail ;

(2) [H,V,r] _ Arnoldi (a,H,V,r,l,k)

(3) For m = 1,2,...

(1) if (llrl[ < tot) then stop:

(2) [V,H,r] _ Arnoldi (A,H, V,r,p)

(3) u = Shifts (g, p)

(4) Q _- Ik+p;

(5) for j = 1,2,...,p

(_t) H ,- Q_HQj ; (Bulge-Chasecorrespondingto shift _,_= u(j))

(_) Q _- QQ_ :

19



(e) v ,- (VQ)e_+,; v ,- (VQ)( ;d ) ;

(7) ,- ,- (v;_ + ,',,k); where;3_= eL,Hek,

Remark 2: The Bulge Chase at step (3.4.1) is defined implicitly as usual

so that H -/_jI = QjRj; if the shifts are in complex conjugate pairs then

the implicit double shift can be implemented to avoid complex arithmetic as

usual.

Remark 3: During a Bulge Chase sweep at step (3.4.1), it may happen that

a sub-diagonal element flj becomes small. The deflation strategies associated

with the QR algorithm are then employed. In this case,

H,
H=

_e_eZ aj 0 /-lj
, VQ = (_,_).

Thus, an invariant subspace of dimension j has been found. Ifj >_ k then the

iteration is halted. Otherwise Hi, V3 are retained and the iteration proceeds

with V/, Hj filling the role of V, H respectively.

As discussed at the beginning of this section, each application of an im-

plicit shift pj will replace the starting vector vl with (A- p.iI)Vl. Thes after

completion of each cycle of the loop at Step 2 in Algorithm (4.8):

Ve, = vl _ ¢(A)vl ;

where ¢()_) 1 p= 7 l-]J=1( )_- #J)" Numerous choices are possible for the selection

of these p shifts. Some possibilities will be discussed in Section 5. However,

there is one immediate possibility to discuss and that is the case of choosing

p "exact" shifts with respect to H. Thus the selection process might be
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Algorithm 4.9

function [u] = Shifts (H, p)

(1) Compute )t(H) (by QR for ezample)

(2) Select p unwanted eigenvalues {u(j) _ #j : 1 < j < p} C $(H)

Some obvious criterion for this selection might be

(i) Sort ,_(H) according to algebraically largest real part and discard the p

smallest;

(ii) Sort )_(H) according to largest modulus and discard the p eigenvalues of

smallest modulus;

Selecting these exact shifts has interesting consequences in the iteration.

Lemma 4.10 Let ,_(H) = {01,...,Ok} t_; {#a,...,#v} and let

H+ = QT HQ

where Q = Q1Q2"'" Qp with Qj implicitly determined by the shift #j. If

1 <j <k-1 then_k=O and

H+= ( H+0 M+)Rp

wheI'e/_(g:)- {01,...,Ok}, /_(Rp)= {_l,#2,...,#p}. Moreover,

v + =VQel=_yj

where each yj is a URitz" vector correspondin 9 to the Ritz value Oj i.e. yj =

Vsj where Hsj = sjOj 1 <_j < k.
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Proof: Note HI = IH and after applying the p implicit shifts we have

HQ=QH+

so that
1 P

- u,) •ql-Qel=¢(H)el, ¢(_)= r
j----1

k
Therefore ql = _j=l sJ(.i where Hsj = sjOj since qx = _(H)el has an-

nihilated any component of el along an eigenvector of H associated with

#j , 1 _< j _< p. As a consequence of Theorem (2.8), /3k = 0 must hold.

Moreover, v + VQel Vqa k= = = -- _-,j=l YJG" []E_=I Vsj(_ k

This lemma provides a very nice interpretation of the iteration when exact

shifts are chosen. Casting out the unwanted set of eigenvalues using exact

shifts is mathematically equivalent to restarting the Arnoldi Factorization

from the beginning after updating vl *-- F. yj(j a linear combination of Ritz

vectors associated with the "wanted" eigenvalues. Thus the updated starting

vector has been implicitly replaced by the sum of k approximate eigenvectors.

If A is symmetric and the p algebraically smallest eigenvalues of H are

selected for deletion then this method is equivalent to the single vector s-step

Lanczos process described by Cullum and Donath in [5] and expanded on in

[6, 8]. This variant has the advantage that a restart of the entire Lanczos

sequence is not required. Instead, it is updated in place and orthogonality is

maintained.
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5 Some Polynomial Filters

The previous discussion has indicated that it would be advantageous to con-

struct polynomials ¢(_) of degree p which filter out certain portions of the

spectrum of A. Several researchers have considered such schemes [5,8,28].

Related ideas appear throughout the literature of iterative methods for lin-

ear systems [17,21,30].

A particularly appealing polynomial filter may be constructed using Tcheby-

chev polynomials. In this case, one constructs an ellipse containing the un-

wanted eigenvalues of H then at step (2.2) of Algorithm 4.9 the shifts juj are

taken to be the zeroes of the Tchebyshev polynomial of degree p associated

with this ellipse (i.e. the polynomial of degree p which gives the best ap-

proximation to 0 in the max norm). Construction of such an ellipse and the

associated polynomials is discussed by Saad [29] and is based on Manteuffel's

scheme[20]. Variants of this are presented and discussed by Chatelin and Ho

in [2].

An alternative is to use exact shifts as described earlier in Section 4.

When A E R "×n one should take these exact shifts in complex conjugate

pairs in order to avoid complex arithmetic by using the implicit double shift

technique. This use of exact shifts is quite effective in the symmetric case

and may be analyzed in that setting. That analysis will be done in the next

section.

One may observe that both filters will have the feature of weighting ex-

treme eigenvalues most heavily. An alternative is to construct polynomial

approximations to step functions which take the value zero in unwanted
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regionsand one in wanted regionsof the complex plane. One also might

construct polynomials which produce an updated vl + which is a weighted

linear combination of approximate eigenvectors corresponding to the wanted

eigenvalues.

In order to construct these sorts of filters it is advantageous to be able

to apply the filter polynomial which is specified by its coefficients when ex-

panded in the basis of polynomials constructed through the Arnoldi (Lanc-

zos) process. To make this more precise, suppose _b is any polynomial of

degree less than or equal to p. Then expand ¢ in the form

p+l

= .jpj-l( )
j=l

where {pj} are the Arnoldi (Lanczos) polynomials. Observe that

g,( A )v_ = Vy

where yT = (rh, rt2, ..., r/p+l, 0, 0,..., 0) since

p+l p+l

Vy= __v.irlj = __rSpj_l(A)vl, vj = p¢_l(A)vl.
j--=l j----I

Unfortunately, the technique developed in Section 4 for the implicit appli-

cation of ¢(A) to vl is not directly applicable because the roots of ¢ are

unknown. However, there is an analogous way to apply this polynomial

implicitly. Assume that [[y[[ = 1 and construct a vector wo such that

(5.1)

Replace H by

(5.z)

I -- 2wowo T) el = y.

[-I = (I- 2WoWoT)H(I- 2WoWoT).

24



Now, apply the Householderreduction of af/ to upper Hessenberg form so

that

ft ¢-- QTHQ

where

(5.3) Q : (I- 2wowo T) (I- 2wlwl T) ... (1- 2wk+p_2wk+p_2 T)

with each (1 - 2wjwj T) being a Householder transformation constructed to

introduce zeros below the (j + 1) - st element of the j - th column. Now,

consider the application of Q to the Arnoldi Factorization:

AVQ - VQ(QTHQ) = rek+prQ

In order to fit within the updating framework developed in Section 4, the

condition

ek+pTQej = O, 1 < j < k.

must hold. This is established by the following

Lemma 5.2 The matrix Q displayed in (5.3) satisfies ek+pTQej = 0 , 1 <_

j<k.

Proof: Let Qj = I-2wjwj T for 0 < j < k+p-2, and let H (j+ll =

QjTH{J)Qj with H I°} = H. From (5.1) it follows that Wo = O(y - ea), with

-1- Ily - exll. Thus, eiTQo - ei T for i > p + 1 Since

QoH (1) = HQo

and since H is upper Hessenberg, it follows that

eiT H (') = eiT HQo = eiT H
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for i > p + 2. From this one may conclude that eiTwl = 0 for i > p + 2 and

thus eiTQ1 = ei T for i > p + 2. Now, suppose that eiTQj = ei T and that

eiTH (j) = eiTHfor i > p + j + 1. Since QjH ('i+1) = H(J)Qj it follows that

eiT H (j+l) = eiT H(J)Qj = eiT H

for i > p + j + 2, and again, one may conclude that eiTwj+x = 0 so that

eiTQj+l = ei T for i > p + j + 2. This inductive argument continues to hold

until j = k - 1. Hence,

e Tek+prQ = k+p Ok-lOk...Qk+p-2

Now, observe that Qiej =ej fork-l<i<k+p-2andfor l_<j< kto

establish the result. []

This observation allows the application of a polynomial filter when the

polynomial can be expanded in the Arnoldi basis. It provides an opportunity

to implement at some interesting options. The idea is to construct a weighted

linear combination of approximate eigenvectors corresponding to the wanted

eigenvalues of the matrix A. One may do this by taking a linear combination

of the eigenvectors of the leading pxp principal submatrix of H corresponding

to the k eigenvalues of this matrix that are the best approximations to the

wanted spectrum. It has been assumed that p _> k. Let these vectors be _),i

and form
k

j=!

and put yT = [_Ni(yl̂T, 0) . Note that

k

1 Z;
vy_ I1 )11
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and the vectors Vp_lj are the approximate eigenvectors constructed by the

Arnoldi process from the Krylov subspace of dimension p. In [28] Saad dis-

cuses some heuristics for choosing the weights 3'j. One possibility is to alter-

nate the application of this polynomial with the application of a Tchebychev

polynomial or with the polynomial constructed with exact shifts. Let us

denote that polynomial by ¢ then it would be natural to take

-,/j = 1/_(¢)

where the 0j are the approximate eigenvalues in the wanted spectrum. The

rational for such a choice is that after these two successive steps

v, ++ = ¢(A)(b(A)v,

-- y_ ¢(A)__,(A)Vp_j
j=l

k

-- E ¢(_J)_(Oj)q.i q- ¢(A)¢(A)z
j=l

k

= y_ qj + _l,(A)¢(A)z
j=!

Where {qi} is the set of normalized eigenvectors corresponding to the eigen-

values of A that are approximated by 0j and the vector z is orthogonal to

{qj}. Since z will nearly belong to the subspace spanned by the eigenvec-

tors corresponding to eigenvalues belonging to a region in the complex plane

where the polynomial ¢(A)¢(._) is small, this choice will have the desired

effect. Namely, the starting vector is forced to be the sum of k eigenvectors

of A.
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6 The Symmetric Case

The symmetric case is important and therefore, it is worthwhile to analyze

the k-step method in this setting. Throughout this section it will be assumed

that

A=A T .

The Arnoldi Factorlzation then reduces to its predecessor the Lanczos fac-

torization

AV - VT = re T

where T is a symmetric tridiagonal matrix. In order to analyze the iteration

induced by Algorithm (4.8) when exact shifts are taken some notation and a

preliminary lemma must be established.

Lemma 6.1 Let

be a symmetric tridiagonal matrix. Then the roots of the equation

1

fl2eT(T - )_I) -1 ek = eT(__ _i)_le 1 •

are eigenvalues of M.

Proof:

), ¢ )_(T) 0 )_(T)

M_- (

Define Mx = M - )_I , T_ = T - )_I and _b_ = _ _ hi. Then for any

 kelel
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Thus

detMx detTadet(Tx- _ T -1 T= )

= detTxdetTxdet(1- fl2eTTf'eke,eTT-_)

= detT_detT"a[1- 2 T-1 T'-1ek)( ,T

Since A(T) U A(T) is a discrete set, the expression developed for detMa is

seen to be valid in general by a continuity argument. 121

With this lemma established it will be possible to analyze the iterations

using polynomial filters constructed from exact shifts. The selection rule to

be analyzed is to retain the k extreme eigenvalues of Tk+v (i.e. an equal

number of the smallest and largest eigenvalues of Tk+p ). Let m denote the

iteration number. Then v[ "_) is the starting vector, and

A V(m) v("') 7'(m) ..("') eT+pv kq-p -- v k"l-p .t k'l-p _ "k+p

Let

have eigenvalues

P'k el Ck
}_(m) ^T )

k ek_l

7_(,-,,)

{Ol,rn+, < O2,m+l < "'" < 0t,rn+l < _l,m+l < "'"

< l.tp,m+_ < Ot+_,m+_ < "'" < 8k,,,,+_}

and let T_ ''') have eigenvalues

{0am < 02_ < "'" < 0_ < 0_+_m < "'" < 0kin}
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and let eT(T ("`) -- AI)-'e, have zeroes {/51m <''" < /sp-l,rn}- Then

(T("`+l) )
_v(m) Q("`) _ k 0

Q(m)T _ k+p ----- 0 E) (re+l)

where Q("`) = QI"`Q2"`"" Qp"` are the orthogonal matrices constructed to

apply the implicit shifts #1"`,..., #p"` at step 2.4 of Algorithm 4.8. And step

(2.5) gives

From Lemma (6.1),

v_(m+')-[vk(+)pQ(')] [ h ]- o

{Oj,m+l} U {#j,"`+l}

are the k + p roots of the equation

(6.2) ¢_(m)_2J_T("`) Al)-'ek = I
J - eT(Dm)-

Lemma 6.3 Each {0j,,_}, m = 1,2, ... is a decreasing sequence for 1 <_ j <_

2, and an increasing sequence for e 4- 1 <_ j <_ k. Moreover, 0t"` < #1("`+1)

and #p,(,,,+l) < 0e+l."` for all m sufficiently large.

Proof: It will first be shown that 0e"` </51,,, for all m sufficiently large. To

see this, suppose that

Define

/_l"` </_1"` •

1

= xI)-'e,"

Note that the zeroes {#1,, < "'" </5,-1,,,,} of the function eT(:T (m) -- AI)-_e_

are poles of ¢. One can check that (3(m))2eT(Tk (m)- AI)-_ek is an in-

creasing positive continuous function on the interval (-oo,01m) and that
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¢ is unbounded above as ,k ---, -oo and that ¢(/51m --r) _ --c_ while

¢(/_1,,, + r) --* +oo as r --4 0. From these facts, it follows that the root

Ox,m+l < #1,_ and also 02,,_+1 _< 01m due to Lemma (6.1) and the rational

structure of equation (6.2). Therefore,

01,=+1 < _lm < 02,m+] _< 0],,

The interlace theorem given by Golub and VanLoan in [16,p479] assures

the existence of an eigenvalue ,kjm of A between 01,m+1 and 02,m+1 and hence

)_jm must also lie between 0],m+l and 0],m. However, this situation can occur

at most n times since each occurrence isolates a distinct eigenvalue of A. The

same argument may be applied in succession for 0jm 1 < j < g to see that

/2am < 0j,,, at most n-times. A similar argument will show 0jm < Ihp,_ at most

n times. For rn sufficiently large this will imply that

Oam < "'" < Otto < [_,,, < "'" < [_p-l,m < Oe+l,m < "'" < Okra

It follows readily from Lemma (6.1) and the rational structure of equation

(6.2) that there is exactly one zero of the equation in each of the intervals

(--(30, elm], (elm , e2m],... (_(/-1)m, Olin], [ee+l,m, e(l+2)m),"', [e(k-1)m, Okra), [Okra, 0_).

Moreover, since (3_=))2er(T_ ''1- M)-'ek is a strictly increasing continuous

function on the interval (Or,,,, 8t+l,m) which tends to -oo at the left endpoint

and +oo at the right endpoint of the interval and since ¢(,_) alternates sign

on crossing each pole/_jm, it follows that there are p zeros of equation (6.2)

in the interval ($tm, 81+1,m) and hence

{t_S(m+l)} C (O_m, Ot+l,m).
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persistsfor all m sufficiently large. []

The following theorem resultsdirectly from Lemma 1.2.

Lemma 6.4 {0s,,,} is decreasing and limm--.¢, 0p,_ = 0i 1 < j < g while

{03m } is increasing and limm-.oo 03m = 0j g + 1 < j _< k.

Proof: The proof of Lemma (6.2) implies that 0j,m+l < 0j,_. for j < I while

0j,m+l > 0j,,, for j > I for all m sufficiently large and _1 - Oj,_ <. _n for alI j

and all m. Since bounded monotone sequences converge the result is proved.

[]

The convergence of the sequences {0jm } has been established but it is still

not clear that the limit points will be eigenvalues of the matrix A. This shall

be established by showing that the sequence {/?k(m)} is not bounded away

from zero.

Theorem 6.5 The limit points {0j} of the sequences {0jm) are eigenvalues

of the matriz A.

Proof: The sequence of vectors {vx (m)} lie on the unit ball in R '_ and

hence have a convergent subsequence {vl (m_)} Let _31 be the limit of this

subsequence. It is sufficient to show that the corresponding subsequence

{fl_"_)} converges to zero. Let e be a specified acceptance tolerance in the

sense that the iteration is halted, or deflation occurs when a subdiagonal

of H falls below _. Then, without loss of generality, it may be assumed

that flj(') > c for all j ¢ k (otherwise a deflation would have occurred at

indices j < k or the iteration would halt if/3J '_) < e for j > k). Suppose that

/3k(m_) > e for all i. It follows from the implicit-Q Theorem that the sequence of
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matrices {T(m')}, {_b(m,)}and the sequenceof vectors{r(km')} must converge

to limits Tk, T and rk respectively. Moreover, _3_'_') _/3k = [[rk[[. Now, the

subsequences {0j(m,+l)} each must converge to a root of the equation

1
2 T¢_kek(Tk-- Al)-lek =

_r(__ A/)_I_ •

But, at the same time 0j(m,+l) -_ 0j which leads to a contradiction. The

contradiction arises since {0_} = A(Tk) and hence no 0j can be a root of the

equation above. This is assured since 3k ¢ 0 and the last component of each

eigenvector of Tk as well as the first component of each eigenvector of T must

be nonzero due to the nonzero off diagonal elements of Tk, T. It follows that

/_') _ 0.

The assumption that _j(") > e for j < k and the implicit-Q Theorem

imply that ¢_(k''') ---, _k = IIrkll and since this nonnegative subsequence is not

bounded away from zero it follows that Ilr_')l[ --, II_kll=/_k = O. From this

one may conclude that {0j} must be eigenvalues of A. []

These results which are based upon compactness arguments are not very

satisfying. They do not reveal much about the behavior of of the iteration.

A better understanding of the nature of the convergence is found in the fol-

lowing results. The following discussion essentially shows that the expansion

coefficients - _) qTv[_)_rj = . must converge to zero for ,_3 E (01, 0t+l) •

m q'm(A)vL
Define: qG,,(A) = 1-Ii=1 ¢i(A). Then v[_ = II¢,,,(A)v, ll"

/A,,-X,_-I 1) pmLemma 6.6 Assumei >_ 2, £+1 _< k-1. Then (i) I'I'_(A=)I >__k_ + I_(A._,)I

(//) I_(_X,)l > ¢ _---_-=_+ 1) w
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Proof: Assume m is sufficiently large that {_jm} C (Or, Oe+l) holds. Consider

the normalized polynomial

*'m(_) - %(_)
kI/m(/_n_1)

Note, that Ot < )_n-1 will imply that

e=l 3=I \ )In-I -- #jl//

A - #it A - An_l A - An_a
= +1>

l,,_a -/_j* An_, - #jr - l,,_, - Ot
+1

for ,X > J_n-1 and (i) follows. A similar argument using *_(_) will establish

(ii). []

Let us now define 7! m) T (m)= qj V1 where {qj} are the orthonormal eigen-

vectors for A. Then the following lemma may be established.

Lemma 6.7 Suppose that neither of vTql or vTqn are equal to zero. Then

7_"_) ---, 0 for every j such that A,,_I >_ Aj > Ot+l and for every j such that

A_ < Aj < Or.

Proof: Observe that

Hence

(m) _2
7j ) =

D

qf*m(A)vl')
I[_m(A)vl ')11

),/(.1 ) ,'r,*m(aj)

(_}'))_[¢m(_j)/¢m(_.)]_

,._(1)2 + _in=ll _*mi_.)]
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<

-----_.),(I)] _-_-n-1) An_l --Ot q- 1

--+ 0

for all j such that *'(_:) I is bounded. Now, _m(A) is monic of degree mp_,_(),,,-1 )

and has all roots contained in the interval (Oe, Or+l). Therefore,

(I¢'.,(_)II I%(_,,-,)I) <

for all A E (0l+l, A__a],and

([_m(A)[ / [_m(A2)[) < 1

for all A E [02, Or) and the result follows. []

We are now able to prove the main result.

Theorem 6.8 Suppose that neither of vTl ql or vTq,, are equal to zero. Then

01 = Aa and Ok = An.

Proof: Since the sequence {v_ '')} is bounded it must have a limit point _31.

From our previous result, we know that

qf6, = 0, Aj E (0e+,, An_,] and Aj E [A2,0,) .

Moreover,p_'l(A)_ p(A) k= FI_=_(A- 0j) and each p_m) satisfies

V(m)T (m)2 [A,_. , (m) _< (m) T*2+-, (m)1 t'k t_)_'l vl p [/'t)I) 1
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for all monic polynomials/_ of degree k. Since,

va Pk t_)vl

it follows that

vrp_(A)¢;, <_ ¢JT[_2(A)f),

for all monic polynomials j6 of degree k. But

= 2 2 /_fiTp2(A)b, _ p2(Aj)7_ + 7_P2(A,) + 7.P (-)

)_jE(Ot,Otl+ l )

where 7j = qfvl, _ 7ff = 1. This leads to a contradiction, since it is possible

to construct another monic polynomial/5 such that

_,jt(Ot,Ot+l )

< _3Tp(a)2v_.

as the following Lemma shows. []

Lemma 6.9 Suppose k is even, k > 4, with g s.t. p(X) < 0 on (Oe, Ol+_).

Then there is a quadratic polynomial _ such that

_(_) = p(_) - _(_)

is monic and satisfies both

0 </5(,k,) < p(X,),

and

0 > ib(A) > p(A),

0 < _(_.) < p(_.)

c (0e,0e+_).
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Proof: Take ¢(A) = e(A- Ot)(A- Or+,), e > O. Consider the polynomial 15.

Note that/_ is monic since deg ¢ < degp. Moreover, for e sufficiently small

0 < _(_) = v(A) - ¢(_) < p(_)

since ¢(A) = p(A) -15(A) has at most two roots Oi, Oe+,, it cannot change sign

on (Ol, 01+1).

Now, it is clear for e > 0 sufficiently small

0 </_()q) = p(A,) - e(A1 - Oe)(Aa - Oe+x) < p(A1)

and

0> _(_.)=p(_.)-_(_,,,-o_)(;_,,-o,+l)> p(_,,)

since ¢ < 0 for A 6 (0t,0e+l). 1:3

These results indicate that the sort of convergence that takes place will

typically be slow linear convergence of [Ir(m) II to zero with a rate governed by

the ratio ¢(')(0e)/¢(m)(Aj), where Aj is the eigenvalue of A in (0t, 0t+a). This

may be seen through an analysis similar to the proof of Lemma(6.7). While

this iteration does seem to perform reasonably well in practice if one monitors

the Ritz estimates and halts when these are small for a significant percentage

of the k eigenvalues actually sought. However, other iterations such as the

one developed in Section 5, might do a better job of evenly distributing the

components of the vector vi along the k wanted eigenvectors.
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7 The Generalized Eigenvalue Problem

In this section the generalized eigenvalue problem will briefly be discussed.

The generalized problem is to find (x, ,_) such that

Ax = $Mx .

Most often, the matrix M arises from applying a Galerkin principle to a

linear operator £: which leads to

A = (C¢,, ej), M = (¢. ej)

where (,) is an inner product on a linear space 7"/ and and {¢j} • W"

is a basis for a finite element subspace W" C _. The matrix M is thus

symmetric and positive definite. This condition shall be assumed in this

section. The basic iterative method will carry over to this setting with very

little modification. It will be necessary to set aside storage for two basis

matrices V and W and to maintain and update a factorization of the form

(7.1) AV- WH = re T

where

W = MV, vTw = I, and vTr = 0 .

Again a simple recursion is available to advance the factorization (7.1) one

step. Just note that

(7.2) A(V, v) - (W,w) = r+_L,
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leads to

SO

But w = My , so by solving

AV- WH- /_we [ = 0

(r - _w)_ = o .

(7.3)

one may scale by _3 to get

M_ = r and putting Z=(_rr)_

1 1

v_-_, w_-_r.

Since VTr = 0, and uTw = 1, it follows that

V+rW+= h+l ,

where V+ = (V, v) and W+ = (W, w). Then one has

-" Av
O_ V T

follows from equating the (k+ 1)-st column of (7.2) and the updated residual

r+=Av-(V'v)( h)a

Again this step may be accomplished through two matrix vector products

followed by two more to accomplish one step of iterative refinement to ensure

the biorthogonality of V, W.

There are two key consequences of this arrangement:
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1. QTVTWQ = I is preserved so the implicit Q-R shift strategy may be

applied.

2. If A = A T is symmetric, then

H = VTAV

follows from vTw = I, VTr = 0 so that H = H T will be symmetric

and tridiagonal when A is symmetric.

With these observations, it is straightforward to adapt the algorithms

previously discussed to solve the generalized eigenproblem. Some limited

computational experience with this approach is the subject of the following

section.

8 Computational Results and Conclusions

Computational results for this technique are quite promising but are certainly

preliminary. There is a Fortran implementation of the algorithms developed

here. Two versions of the code have been produced. One of these implements

the strategy for the generalized symmetric eigenvalue problem as described

in Section 7. The other implements the algorithm for the standard non-

symmetric eigenproblem. In addition to exhibiting behavior on some test

problems, two experiences with applications will be discussed. Finally, some

very interesting illustrations of the shapes of the filter polynomials that are

constructed through exact shifts shall be reported.

There arc some important details of the Fortran implementation of Al-

gorithm (4.7). Step 3 requires a user supplied matrix vector product. Steps
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4 and 5 are implemented through calls to the level 2 BLAS [11,12] routine

DGEMV. One step of iterative refinement is carried out at Step 6 of Algo-

rithm (4.7) rather than iterating until the test ]]s]] < ellrll is passed. Steps

(6.1) and (6.2) were also implemented through calls to DGEMV. In all of

the computations observed there was never a loss of orthogonality in the

columns of V. In all cases IIvTv- Ill was on the order of unit roundoff

error. Eigenvalue calculations used a slight modification of EISPACK [32]

subroutines TQL in the symmetric case and HQR in the nonsymmetric case.

These may be replaced by the corresponding block routines from LAPACK

[10] to enhance performance in the future.

Expressing the algorithm in terms of the level 2 BLAS has provided the

means to achieve high performance portable Fortran code. The code has been

run on SUN SPARC, CONVEX C1, Stardent Titan, CRAY 2, and CRAY

YMP computers. The cost of operations were clearly dominated by the

user supplied matrix vector products (and system solves in the generalized

problem). The time spent in the user supplied portion was orders of mag-

nitude over the time spent in the other parts of the eigenvalue calculations.

This performance characteristic is a direct consequence of the performance

of DGEMV on the architectures of the machines listed above. The crucial

point for improving the algorithm is to better understand the construction

of the filter polynomials in order to reduce the required number of user sup-

plied matrix vector products . Parallelism may be invoked through the level

2 BLAS and also through the user supplied matrix vector product.

In all of the results reported below, exact shifts were used as described

in Algorithm (4.10). The iteration was halted when ][(eTyj)rk][ < 10 -7, 1 _<
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j _< k - 3 where yj is the j - th Ritz vector corresponding to Ritz values

approximating the wanted spectrum. This ad hoc stopping rule allowed

the iteration to halt quite early in cases where it was dimcult to make a

clean separation between the wanted and unwanted spectrum. This ad hoc

criterion will have to be replaced with a more rigorous one in the future.

In the first set of test problems the matrix A arises from a standard 5-

point discretization of the convection-diffusion operator on the unit square

ft. The PDE is

--Au + pu,: = Au, in f_, u[on = O

When p = 0 the matrix A is the discrete Laplacian and for p > 0 A has

distinct complex eigenvalues which appear in a rectangular grid in the com-

plex plane when the cell size h = 1/(n + 1) is large enough with respect

to the parameter p. However, the boundary conditions of the continuous

problem do not admit eigenfunctions corresponding to complex eigenvalues,

so the eigenvalues of the matrix A become real when the mesh size becomes

small enough. The order of the discrete operator A is N = n 2 and since it's

eigenvalues are distinct, it is diagonalizable. These problems allowed testing

of the algorithm for accuracy and performance in some interesting but well

understood cases. In both of the tables below, the values k = 10 and p = 10

were used. The two columns on the right of the tables give the norm of

the residual vector r and the norm of the true residual [lAx - xA[[ for the

sixth eigenvalue. Typically, the eigenvalues of smaller index had residuals

that were smaller than this one. For the symmetric problems the residual

estimates were uniformly small for the eight smallest eigenvalues.
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Table 8.1

Discrete Laplacian

Dimension Niters

100

256

400

625

900

1600

2500

3600

4900

8100

10000

II ll IIAx-x li
12 1.4-06 3D-15

23 3.4-06 5D-15

29 6.5-06 5D-15

25 7.1-06 3D-14

29 6.2-06 2D-14

43 2.9-06 6D-14

50 1.1-05 9D-13

63 9.9-06 4D-11

92 8.9-06 1D-11

237 1.1-05 1D-11

165 1.1-05 8D-12

In Table 8.2 below, the problems of order 256 and 400 did not satisfy the

convergence test before the maximum number of iterations allowed had been

reached. In all cases the ten eigenvalues of smallest real part were sought.

In both of the problems just mentioned, five or more eigenvalues had been

determined to high accuracy. In all cases the iterations could have halted

much earlier if a better stopping criterion were devised.
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Table 8.2

Convection Diffusion

Dimension

100

256

400

625

900

1600

Niters Hrl[ IIAx- xAl I

61 5.3-06 1D-12

100 .23 1D-5

100 5.2-03 2D-10

77 2.3-06 8D-12

153 8.9-06 2D-14

103 7.4-06 6D-14

The second set of results will briefly describe two problems that arise in

the context of solving partial differential equations. The first of these involves

a discretization of a membrane problem in which the membrane is composed

of two materials. On an open bounded connected set f/C R _ we consider

-Au = _pu, inf/, u[on = O

where the density p is of the form

P = (_Xs +/3(1 - Xs)

where Ks is the characteristic function of a subset S C f_ with area 7. The

problem is to determine the density function p which minimizes the lowest

eigenvalue A1(p) of this PDE. Here a and/3 are the known (constant) densities

of two given materials in respective volume fractions 7/]fl] and 1 -7/1121 and

the set S is occupied by the material with density a. Cox [4] has formulated

an algorithm to solve this minimization problem. The algorithm generates a
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sequence of symmetric generalized eigenvalue problems

Av = )_M(p)v

which arise through a bi-linear finite element discretization of the PDE. The

density function p is modified at each iteration with the set S determined

through level sets of the corresponding eigenfunction. The matrix A is pos-

itive definite and independent of the density function p so the problem was

cast in the form

1

M(p)v = _Av.

Since only matrix vector products are required of M the dependence on p

presented no additional computational burden. The matrix A was factored

once and this factorization was subsequently used repeatedly to solve (7.3)

(with A playing the role of M in that equation). The eigenvalue iteration also

benefited from the re-use of the converged starting vector from the previous

problem but this did not appear to be of great consequence in this case.

The following table gives results for the same sub-problem on a variety of

machines.

Table 8.3

Membrane Problem on Various Machines

Sun Convex Titan Y-MP

Time (secs)

matrix vector

IIvTw- Ill

240 81 40.9 5.4

40 40 40 40

10-14 10-14 10-14 10-11

45



The overall performance was excellent on this problem. Grid sizes of of

64 by 64, 100 by 100, and 200 by 200 were used. Both minimization of )h(P)

and _(p) were done. The number of matrix vector products was typically

around 32-40 regardless of the dimension of the matrix. That is, with k = 8

and p = 8 the eigenvalue solver required 3 to 4 iterations with 3 being the

usual number. The Ritz estimates for I[Ax - M(p)xAI[ were on the order of

10D - 14 for the lowest six eigenvalues.

The second application leads to a nonsymmetric eigenvalue problem. The

PDE arises in a study of bifurcations in a Couette-Taylor wavy vortex in-

stability calculation. This work described in [13] is based upon a method of

W.S. Edwards and L.S Tuckerman which is designed to study these bifurca-

tions from Taylor vortices to wavy vortices. The discrete problem is obtained

by first linearizing the Navier-Stokes equations about a (numerically) known

steady state solution U corresponding to Taylor vortices. The perturbation

u corresponding to wavy vortices is found by solving the linearized Navier-

Stokes problem

with

_U

Ot
- (U. V)u - (u. V)U - Vp + uV2u

V.u=Oand u loa=0

where ft is the annular region between two concentric rotating cylinders.

This PDE is discretized to then yield a nonsymmetric eigenvalue problem

A(u)v = )_v

Since a pseudo-spectral method is used, the discrete matrix is dense rather
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than sparse.However,matrix vector products canstill be performedrapidly

using Fourier transforms. The discrete problem involved a matrix of order

2380 . The eigenvaluecode with k = 16 and p = 40 required 60 iterations

to produce eight eigenvalues and corresponding eigenvectors with largest real

part. This entailed about 2400 matrix vector products. The accuracy of these

were confirmed to be at least five significant digits. Edwards in a private

communication remarked that in his opinion "the high accuracy could not

have been achieved by other methods I might have tried."

This behavior of the algorithm on these two problems seems to be typical

on more difficult problems. The number of matrix vector products tends to

be near n for difficult nonsymmetric problems. Symmetric generalized eigen-

value problems from finite element analysis of structures or membranes seem

to be solved very rapidly if posed in terms of finding the largest eigenvalues.

To close this section, the interesting behavior of filtering polynomials

associated with the choice of exact shifts will be presented. Two problems

will be discussed. The first example arises from the convection diffusion

above with p = 40 . The grid size was 1/30 leading to a nonsymmetric

matrix of order 900 . The results for this problem are displayed in Figures

8.1 and 8.2. The second example is the banded Toeplitz matrix used for

test purposes by Grcar [17]. This matrix is non-normal and has a nontrivial

pseudo-spectrum as discussed in [21]. (The e pseudo-spectrum of a matrix A

is {A E C : ]](AI- A)-I]] > _-1} ). The matrix is a 5-diagonal matrix with

the value -1 on the first sub-diagonal and the value 1 on the main diagonal

and the next three super diagonals. The results for this problem are displayed

in Figures 8.3 and 8.4.
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The graphsshownbelowdepict the filter polynomial ¢(/k) for valuesof

over a region containing the eigenvalues of A. The surface plot is of I¢] and

the contour plots are of log(]_l,]) The + symbols show the location of the true

eigenvalues of A The o symbols mark the location of the eigenvalues of H

that are "wanted". These will eventually converge to eigenvalues of A. The

• symbols show the roots of the polynomial ¢.

Figure 8.1

Convection Diffusion: iteration 1

Figure 8.2

Convection Diffusion: at conversence

In Figures 8.1 and 8.2 the values k = 10, p = 10 were used. One may

observe convergence by looking at the 10 leftmost o symbols enclosing the +

symbols. The interesting features of these filter polynomials is that they are

remarkably well behaved in terms of being very fiat in the region that is to

be damped and very steep outside that region. The reason for this desirable

behavior is not understood at the moment.

Figure 8.3 Grcar matrix: iteration 1

Figure 8.3

Grcar matrix : iteration 1

Figure 8.4

Grcar matrix : at convergence

48



In Figures8.3and8.4the correspondingbehaviorof the filter polynomials

is shown. In these figures only the upper half-plane is shown. The dotted

line showsthe boundary of the practical spectrum [21] for this matrix. It

is interesting to note how the contours of the filter polynomial obtained

through the exact shifts mimic the shapeof this boundary. The algorithm

claimed convergenceof the leftmost eigenvalues(ie. the ten eigenvaluesof

smallestreal part). However,asdemonstratedin the figure, thesearepseudo-

eigenvalues. Interestingly enough, HQR from Eispack will give the same

behavior if applied to the transposeof the Grcar matrix. HQR will give the

correct eigenvalues when applied to the Grcar matrix directly and it was used

to calculate the values of the "true" spectrum shown above.

In conclusion, it seems that this is quite a promising approach. A direct

relationship to the implicitly shifted QR iteration has been established and

several problems inherent to the traditional Arnoldi method have been ad-

dressed through this new approach. The most important of these are the fixed

storage, maintenance of orthogonality, and avoidance of spurious eigenvalues.

The computational results are clearly preliminary. The limited experience

indicates research is needed in constructing filter polynomials which have bet-

ter properties with respect to the wanted part of the spectrum. Moreover,

a better understanding of the Ritz convergence estimates in the nonsym-

metric case would be helpful. These estimates have been very important in

terminating the iteration early (ie. before the residual is very small) in the

symmetric (generalized) eigenproblem. A criterion for choosing the values

of k and p is also required. At present, ad hoc choices are made and there

is little understanding of the relation of these two parameters to each other
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and to the given problem. They havebeenchosenthrough experimentation

for theseresults.

Future researchon this topic might include a blockedvariant to better

deal with multiple eigenvalues.Investigationsof the useof a preconditioner

would also be interesting. Finally, extensionsof this idea to other settings

suchas the solution of linear systemswould seemto be a promising area of

researchaswell. Theseinvestigationsare underwayand will be the topic of

subsequentpapers.
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